Packing and covering with balls on Busemann surfaces

نویسندگان

  • Victor Chepoi
  • Bertrand Estellon
  • Guyslain Naves
چکیده

In this note we prove that for any compact subset S of a Busemann surface (S, d) (in particular, for any simple polygon with geodesic metric) and any positive number δ, the minimum number of closed balls of radius δ with centers at S and covering the set S is at most 19 times the maximum number of disjoint closed balls of radius δ centered at points of S: ν(S) ≤ ρ(S) ≤ 19ν(S), where ρ(S) and ν(S) are the covering and the packing numbers of S by δ-balls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering and Packing with Spheres

We address the problem of covering R with congruent balls, while minimizing the number of balls that contain an average point. Considering the 1-parameter family of lattices defined by stretching or compressing the integer grid in diagonal direction, we give a closed formula for the covering density that depends on the distortion parameter. We observe that our family contains the thinnest latti...

متن کامل

Packing and covering δ-hyperbolic spaces by balls

We consider the problem of covering and packing subsets of δ-hyperbolic metric spaces and graphs by balls. These spaces, defined via a combinatorial Gromov condition, have recently become of interest in several domains of computer science. Specifically, given a subset S of a δhyperbolic graph G and a positive number R, let γ(S, R) be the minimum number of balls of radius R covering S. It is kno...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Packing and Covering Properties of CDCs and Subspace Codes

Codes in the projective space over a finite field, referred to as subspace codes, and in particular codes in the Grassmannian, referred to as constant-dimension codes (CDCs), have been proposed for error control in random network coding. In this paper, we first study the covering properties of CDCs. We determine some fundamental geometric properties of the Grassmannian. Using these properties, ...

متن کامل

On Free Planes in Lattice Ball Packings

This note, by studying relations between the length of the shortest lattice vectors and the covering minima of a lattice, mainly proves that for every d-dimensional packing lattice of balls one can find a 4-dimensional plane, parallel to a lattice plane, such that the plane meets none of the balls of the packing, provided the dimension d is large enough. On the other hand, we show that for cert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2017